
# Pilatus PC-21

3D Printed RC model



By Ismaël "Khan" JUHOOR

# **Disclaimer and Warnings**

This RC plane design is intended for responsible people knowing what they do !

RC planes can be dangerous to people and air traffic. It is assumed that you will **comply to your local flying regulations** and general common sense.

I (Ismaël JUHOOR, the author of this design) shall not, under any circumstances, be held liable for damage or injuries that could occur during building and flying this model.

# A few words from the designer

I've been longing to design, build and fly this plane ever since I fell in love with its sleek lines, performances and thrilling 5-bladed turboprop sound.

But I didn't want to keep it all to myself, so I designed the model always thinking about others RC modelers, keeping printing and assembly as easy as possible.

**I hope you'll enjoy flying yours** ! If, despite all thinking, trying and correcting efforts done, something goes wrong, please do not hesitate to drop me a line, so that I can further polish the design.

And if everything goes well, please drop me a line and maybe a photo of your PC-21, I'd be most pleased.

Lastly, if you wish to support my work or want to say "thank you" please consider donating :



# Copyright

RC Model Dimensioning : **Predim RC** <u>http://rcaerolab.eklablog.com/predimrc-p1144024</u>

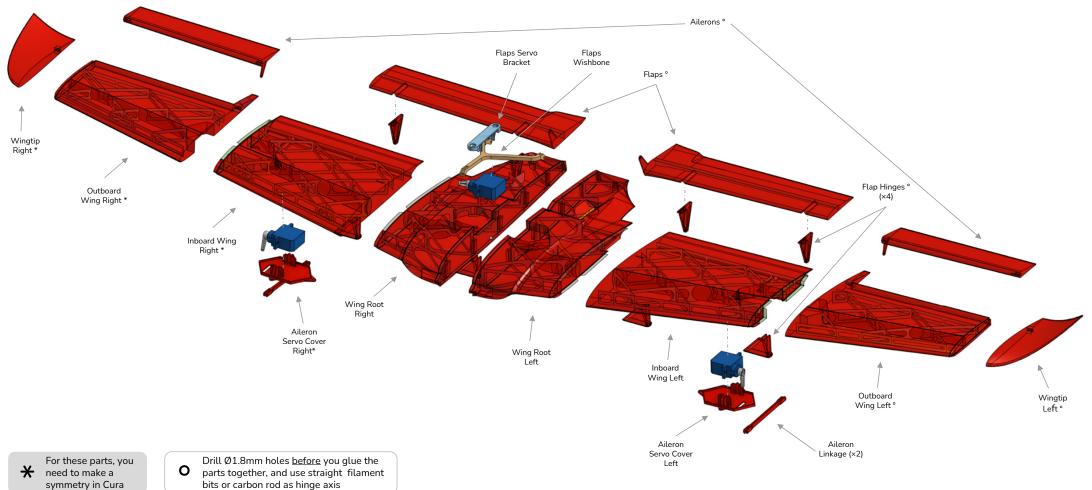
3D CAD Model : Onshape

https://cad.onshape.com/documents/518f00669f7f83c9645e9f68/w/46a3c4874daffb0b36c9e2d4/e/4b63fad1c7efb7671894 0242

This model was designed with a <u>free Onshape account</u>, thus you are free to copy the Onshape document and work on it as you like, to customize the design for your equipment, for example.

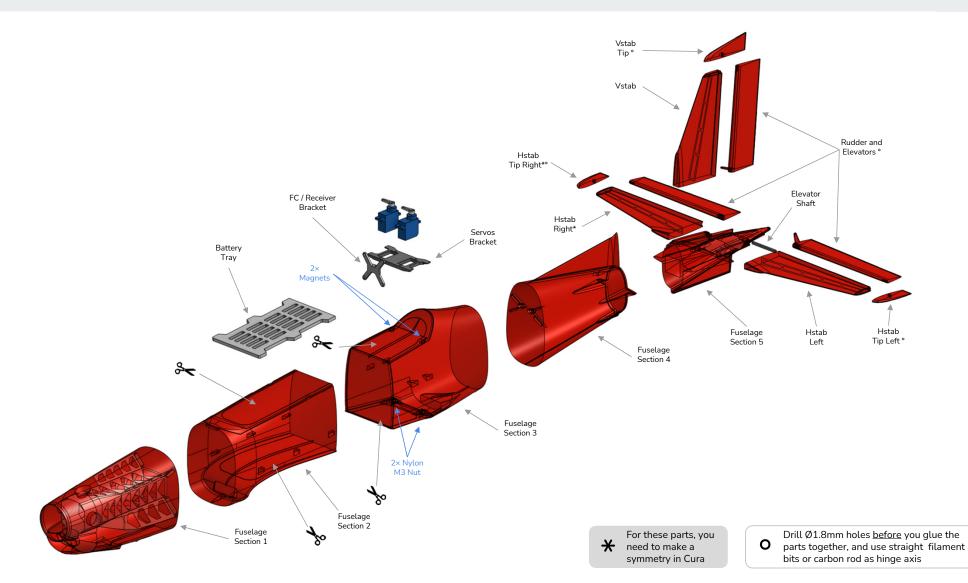
# Parts Overview

### Shopping list

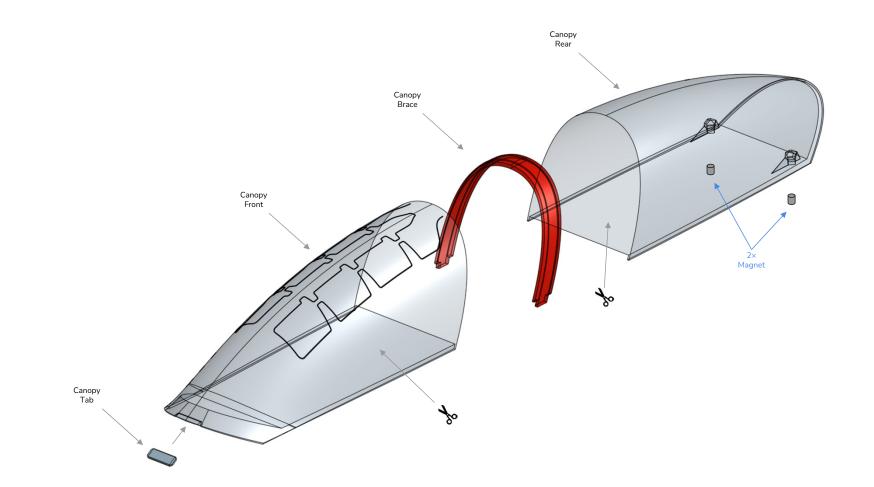

#### **Plane Parts**

- 1× Battery : 1800-2200mAh 3S LiPo
- 1× Motor :
  - Emax GT2215-09 1180 kV
  - Propdrive v2 2830 1200KV
  - Sunnysky X2216 1250kV
  - Sunnysky X2216 1400kV
- 1× 40A ESC
- 1× Propeller :
  - o 9x6
  - 8x6 (for high kV Motor)
- 5× 9g Servo
- 2× Ø1.8mm Carbon Rod (Min Length : 500mm)
- 4× Ø1.8mm Clevis
- 4× Canopy Magnets
  - Ø3×4mm Cylindrical
  - o 3mm Cube
- 2× M3×10mm Cylindrical Head Nylon screw
- 2× M3 Nylon Nut
- 6× 1.5×6mm Countersunk Self-tapping Screw
- 5× 2×6mm Self-tapping Screw

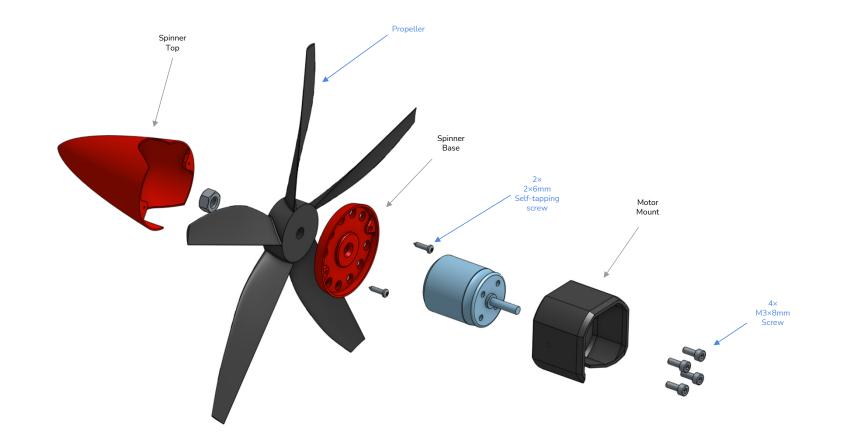
#### Tooling


- Rotary Power tool (A Dremel !) with Ø1,8mm drilling bit
- CyanoAcrylate Glue
- Hobby Knife
- Flush wire cutting pliers

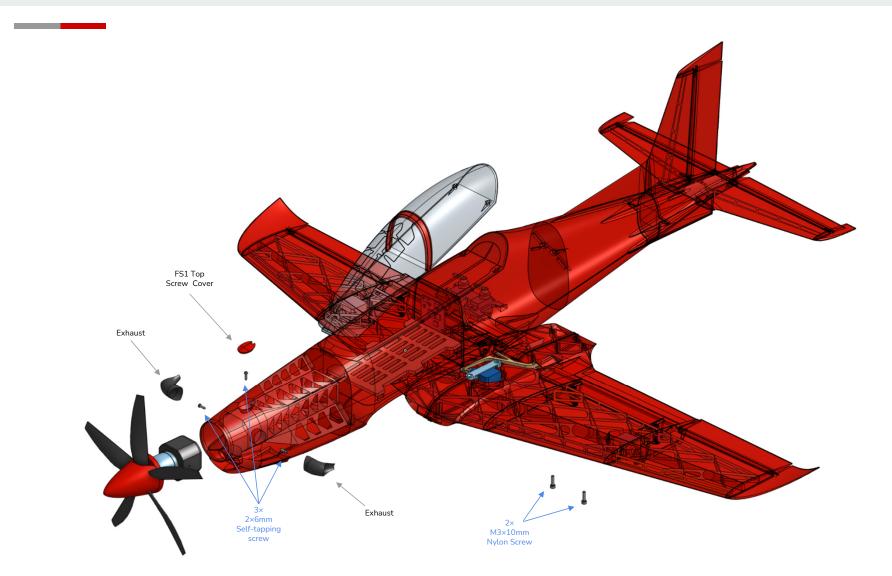
### Wing Assembly




bits or carbon rod as hinge axis


### **Fuselage Assembly**




## **Canopy Assembly**



### Motor Assembly



## **Complete Assembly**



# Printing Instructions & Slicing Profiles

# **Printing general advice**

### Slicer :

Because the design uses CAD loose open surfaces for wing reinforcement and other features, you will need to use **CURA** (version 4.5 and upper) to slice this model. To this day AFAIK, no other slicer can work with loose surfaces.

### Filament :

Use quality, and most importantly, **dry** PLA. This is capital in achieving strong layer adhesion and blob-less single walled parts.

### Printer :

You'll achieve great printing quality with little hassle with a **direct drive** setup. That being said, I printed the prototype on a bowden printer (Anycubic i3 Mega) with good results, but that took some calibration efforts.

# **Slicing Profiles**

# Hybrid 1

Start from a **standard profile** (0,2mm layer and 0,4mm line width),

and modify the parameters with the following overrides :

### Shell

| Wall Line Count                                         | 1                                                     |
|---------------------------------------------------------|-------------------------------------------------------|
| Top Layers                                              | 0                                                     |
| Bottom Layers                                           | 0                                                     |
| Compensate Wall Overlap                                 | Off                                                   |
| Z Seam Alignment                                        | Sharpest Corner - Hide Seam                           |
| Infill                                                  |                                                       |
| Infill density                                          | 0                                                     |
| Infill Pattern                                          | N/A                                                   |
| Travel                                                  |                                                       |
| Combing Mode                                            | Off                                                   |
| Cooling                                                 |                                                       |
| Regular Fan Speed                                       | 0% These cooling parameters                           |
| <ul> <li>Maximum Fan Speed</li> </ul>                   | 30% are a baseline, and will                          |
| <ul> <li>Regular/Maximum Fan Speed Threshold</li> </ul> | 3s probably need to be                                |
| Minimum Layer Time                                      | 5s adjusted depending on your specific machine setup. |
| Lift Head                                               | Off                                                   |
| Mesh Fixes                                              |                                                       |
| Union Overlapping Volumes                               | Off                                                   |
| Maximum deviation                                       | 0.04mm                                                |
| Special Modes                                           |                                                       |
| Surface Mode                                            | Both                                                  |
| Surface Mode                                            | Both                                                  |

# Hybrid 2

#### Shell ● T

- Top Layers
- Bottom Layers

2 4

Take your **Hybrid 1 profile**, and modify the parameters with the following overrides :

## Solid 1

Take your **Hybrid 1 profile**, and modify the parameters with the following overrides :

#### Shell

| ٠           | Top Layers              | 2  |
|-------------|-------------------------|----|
| ٠           | Bottom Layers           | 2  |
| ٠           | Compensate Wall Overlap | On |
| <i>c</i> :I |                         |    |

#### Infill

| • | Infill density | 15% | ) |
|---|----------------|-----|---|
|---|----------------|-----|---|

• Infill Pattern Lines

#### **Special Modes**

Surface Mode
 Normal

Parts using this profile are not as critical as parts using Hybrid 1 profile, so feel free to tweak the parameters according to your experience and printing results.

## Solid 2

Take your Hybrid 1 profile, and modify the parameters with the following overrides :

#### Shell

| ٠ | Wall Line Count         | 2  |
|---|-------------------------|----|
| • | Top Layers              | 4  |
| ٠ | Bottom Layers           | 4  |
| • | Compensate Wall Overlap | On |

#### Infill

| • | Infill density | 20%       |
|---|----------------|-----------|
| • | Infill Pattern | Triangles |

Infill Pattern Triangles

Normal

#### **Special Modes**

• Surface Mode

Feel free to tweak infill pattern and density values

## Wing Parts

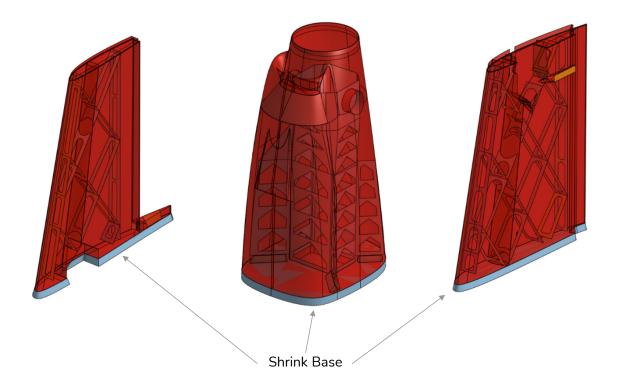
| Qty | Part                | Print Time | Weight (g) | Printing Profile | Notes                                             |
|-----|---------------------|------------|------------|------------------|---------------------------------------------------|
| 1   | Wing Root Left      | 2:27       | 25         | Hybrid 1         | Brim recommended                                  |
| 1   | Wing Root Right     | 2:27       | 25         | Hybrid 1         | Brim recommended                                  |
| 2   | Inboard Wing        | 1:36       | 34         | Hybrid 1         |                                                   |
| 2   | Outboard Wing       | 2:17       | 21         | Hybrid 1         |                                                   |
| 2   | Wingtip             | 0:16       | 4          | Hybrid 1         | Place seam on trailing edge, enhance part cooling |
| 1   | Flaps               | 1:45       | 23         | Hybrid 2         | Place seam on leading edge, enhance part cooling  |
| 1   | Ailerons            | 0:59       | 12         | Hybrid 2         | Place seam on leading edge, enhance part cooling  |
| 2   | Aileron Servo Cover |            |            | Hybrid 2         |                                                   |
| 4   | Flap Hinges         |            |            | Hybrid 2         | Brim recommended, enhance part cooling            |
| 1   | Flaps Wishbone      |            |            | Solid 2          | Can use PETG or ABS                               |

## Fuselage Parts

| Qty | Part                | Print Time | Weight (g) | Printing Profile | Notes                                                                     |
|-----|---------------------|------------|------------|------------------|---------------------------------------------------------------------------|
| 1   | Fuselage Section 5  | 1:02       | 14         | Hybrid 1         |                                                                           |
| 1   | Fuselage Section 4  | 1:34       | 22         | Hybrid 1         |                                                                           |
| 1   | Fuselage Section 3  | 2:39       | 31         | Hybrid 1         |                                                                           |
| 1   | Fuselage Section 2  | 2:08       | 24         | Hybrid 1         |                                                                           |
| 1   | Fuselage Section 1  | 3:17       | 37         | Hybrid 1         |                                                                           |
| 2   | Hstab               | 0:47       | 8          | Hybrid 1         |                                                                           |
| 2   | Hstab Tip           | 0:10       | 2          | Hybrid 1         | Place seam on trailing edge, enhance part cooling                         |
| 1   | Vstab               | 0:48       | 9          | Hybrid 1         |                                                                           |
| 1   | Vstab Tip           | 0:10       | 2          | Hybrid 1         | Place seam on trailing edge, enhance part cooling                         |
| 1   | Rudder & Elevators  | 1:28       | 17         | Hybrid 2         | Place seam on leading edge, enhance part cooling                          |
| 1   | Elevator Shaft      |            |            | Solid 2          |                                                                           |
| 1   | Battery tray        |            |            | Solid 1          | Can omit top layers, use PETG or ABS if you feel your battery can get hot |
| 1   | Receiver/FC Bracket |            |            | Solid 1          | Can omit top layers                                                       |
| 1   | Servo Bracket       |            |            | Solid 1          | Can omit top layers                                                       |
| 2   | Exhaust             |            |            | Hybrid 1         | Switch surface mode to "surface", use brim                                |
| 1   | FS1 Top Screw Cover |            |            | Solid 1          | Can omit bottom layers                                                    |

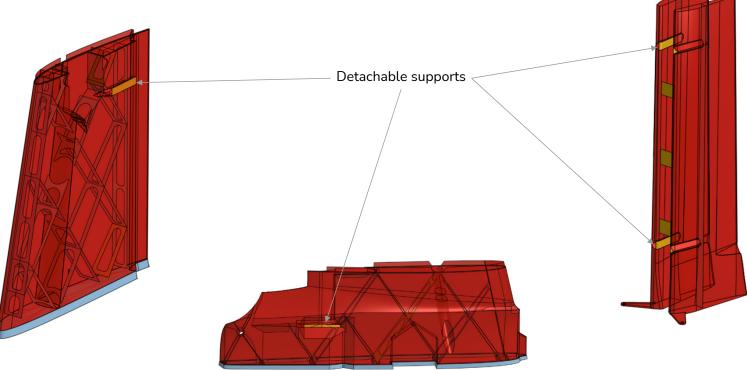
### Canopy & Motor Assembly parts

### **Canopy parts**


| Qty | Part         | Print Time | Weight (g) | Printing Profile | Notes                         |
|-----|--------------|------------|------------|------------------|-------------------------------|
| 1   | Canopy Rear  | 0:43       | 8          | Hybrid 1         |                               |
| 1   | Canopy Front |            |            | Hybrid 1         |                               |
| 1   | Canopy Brace |            |            | Hybrid 2         | Add 15% infill, Lines pattern |
| 1   | Canopy Tab   |            |            | Solid 2          |                               |

### Motor Assembly parts

| Qty | Part         | Print Time | Weight (g) | Printing Profile | Notes                                                      |
|-----|--------------|------------|------------|------------------|------------------------------------------------------------|
| 1   | Spinner Base |            | 5          | Solid 1          |                                                            |
| 1   | Spinner      |            | 6          | Solid 1          | Use Support with a min. supported area of 2mm <sup>2</sup> |
| 1   | Motor Mount  |            |            | Solid 2          | Use PETG or ABS, adjust infill to your liking              |


### Separating supports

- Shrink Base
  - Most tall parts have a 4-6 mm high "shrink base", that you are meant to separate before assembly. It is designed to be slightly offset from the actual part.
  - You can separate it easily if you first cut it open with a pair of clippers
  - Examples :



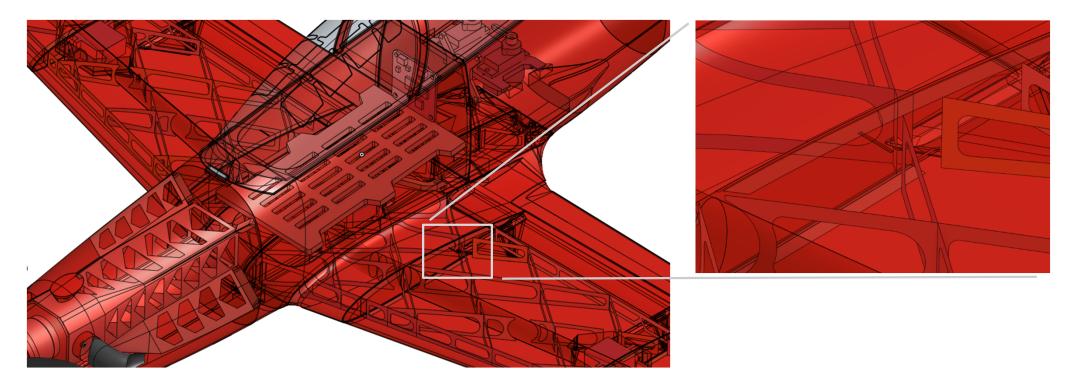
### Separating supports

- Detachable supports
  - Slot for flaps horn in Root sections
  - Slot for flapboxes in Inboard Wing sections and Flaps



# Assembly Notes

# Assembly general advice


Dry-fitting:

Dry-fit all of your parts (hold them together with masking tape) before you glue them.

# Flying notes/

### **Center of Gravity Location**

The recommended Center of Gravity is marked by a crease on the upper surface of the wing root.



This mark is 94,2mm from Leading Edge at wing root, and gives you a 3% static margin.  $\triangle$  CoG aft limit is 4.5mm behind that mark.

# That's it ! Enjoy your flights !